Discrete geometry

Lecture 2
“The world is continuous, but the mind is discrete”

David Mumford
Discretization

Continuous world

- Surface X
- Metric d_X
- Topology

Discrete world

- Sampling
 \[X' = \{x_1, ..., x_N\} \subset X \]
- Discrete metric (matrix of distances)
 \[D_X = (d_X(x_i, x_j)) \]
- Discrete topology (connectivity)
How good is a sampling?
Sampling density

- How to quantify **density** of sampling?
- \(X' \) is an \(r \)-covering of \(X \) if

\[
\bigcup_{x_i \in X'} B_r(x_i) = X
\]

Alternatively:

\[
d_X(x, X') \leq r
\]

for all \(x \in X \), where

\[
d_X(x, X') = \inf_{x_i \in X'} d_X(x, x_i)
\]

is the **point-to-set distance**.
Sampling efficiency

- Are all points necessary?
- An r-covering may be unnecessarily dense (may even not be a discrete set).
- Quantify how well the samples are separated.
- X' is r'-separated if
 \[d_X(x_i, x_j) \geq r' \]
 for all $x_i, x_j \in X$.
- For $r' > 0$, an r'-separated set is finite if X is compact.

Also an r-covering!
Farthest point sampling

- Good sampling has to be dense and efficient at the same time.
- Find and τ-separated τ-covering X' of X.
- Achieved using farthest point sampling.

- We defer the discussion on
 - How to select τ?
 - How to compute d_X?
Farthest point sampling
Farthest point sampling

- Start with some $X' = \{x_1 \in X\}$.
- Determine sampling radius
 $$r = \max_{x \in X} d_X(x, X')$$
- If $r \leq r_{\text{target}}$ stop.
- Find the farthest point from X'
 $$x' = \arg \max_{x \in X} d_X(x, X')$$
- Add x' to X'
Farthest point sampling

- Outcome: r-separated r-covering of X.
- Produces sampling with **progressively increasing** density.
- A **greedy algorithm**: previously added points remain in X'.
- There might be another r-separated r-covering containing less points.
- In practice used to **sub-sample** a densely sampled shape.
- Straightforward time complexity: $O(MN)$

 M number of points in dense sampling, N number of points in X'.
- Using **efficient data structures** can be reduced to $O(N \log M)$.
Numerical geometry of non-rigid shapes Discrete geometry

Sampling as representation

- Sampling **represents** a region on X as a single point $x_i \in X'$.
- Region of points on X closer to x_i than to any other x_j:

$$V_i(X') = \{ x \in X : d_X(x, x_i) < d_X(x, x_j), x_j \neq i \in X' \}$$

- **Voronoi region** (a.k.a. Dirichlet or Voronoi-Dirichlet region, Thiessen polytope or polygon, Wigner-Seitz zone, domain of action).

- To avoid degenerate cases, assume points in X' in **general position**:
 - No three points lie on the **same geodesic**.
 (Euclidean case: no three **collinear** points).
 - No four points lie on the **boundary of the same metric ball**.
 (Euclidean case: no four **cocircular** points).
Numerical geometry of non-rigid shapes Discrete geometry

Voronoi decomposition

A point $x \in X$ can belong to one of the following

- **Voronoi region** V_i (x is closer to x_i than to any other x_j).
- **Voronoi edge** $V_{ij} = \overline{V_i} \cap \overline{V_j}$ (x is equidistant from x_i and x_j).
- **Voronoi vertex** $V_{ijk} = \overline{V_i} \cap \overline{V_j} \cap \overline{V_k}$ (x is equidistant from three points x_i, x_j, x_k).
Voronoi decomposition
Voronoi decomposition

- Voronoi regions are **disjoint**.
- Their closure

\[\bigcup_i \overline{V}_i = X \]

covers the entire \(X \).
- Cutting \(X \) along Voronoi edges produces a collection of **tiles** \(\{V_i\} \).
- In the **Euclidean** case, the tiles are **convex polygons**.
- Hence, the tiles are **topological disks** (are homeomorphic to a disk).
Voronoi tessellation

- **Tessellation** of X (a.k.a. cell complex): a finite collection of disjoint open topological disks, whose closure cover the entire X.

- In the **Euclidean** case, Voronoi decomposition is **always** a tessellation.

- In the **general** case, Voronoi regions might not be topological disks.

- A valid tessellation is obtained if the sampling X' is **sufficiently dense**.
Non-Euclidean Voronoi tessellations

- **Convexity radius** at a point \(x \in X \) is the largest \(\rho \) for which the closed ball \(\overline{B}_\rho(x) \) is convex in \(X \), i.e., minimal geodesics between every \(x', x'' \in \overline{B}_\rho(x) \) lie in \(\overline{B}_\rho(x) \).

- **Convexity radius** of \(X = \inf \) of convexity radii over all \(x \in X \).

- **Theorem** (Leibon & Letscher, 2000):

 An \(r \)-separated \(r \)-covering \(X' \) of \(X \) with \(r < \frac{1}{3} \) convexity radius of \(X \) is guaranteed to produce a valid Voronoi tessellation.

- Gives **sufficient sampling density** conditions.
Sufficient sampling density conditions

Invalid tessellation

Valid tessellation
Voronoi tessellations in Nature
MATLAB® intermezzo

Farthest point sampling and Voronoi decomposition
Representation error

- Voronoi decomposition replaces \(x \in X \) with the closest point \(x^* \in X' \).
- Mapping \(x^* : X \to X' \) copying each \(V_i(X') \) into \(x_i \).
- Quantify the representation error introduced by \(x^* \).
- Let \(x \in X \) be picked randomly with uniform distribution on \(X \).

\[
P(x \in A) = \frac{\mu(A)}{\mu(X)} = \frac{1}{\mu(X)} \int_A da
\]

- Representation error = variance of \(d_X(x, x^*(x)) \)

\[
\varepsilon(X') = \text{Var}(d_X(x, x^*(x))) = \frac{1}{\mu(X)} \int_{x \in X} d_X^2(x, x^*(x)) da
\]

\[
= \frac{1}{\mu(X)} \sum_{i=1}^{N} \int_{x \in V_i(X')} d_X^2(x, x_i) da
\]
Optimal sampling

In the Euclidean case:

$$\varepsilon(X') = \frac{1}{\mu(X)} \sum_{i=1}^{N} \int_{V_i(X')} \|x - x_i\|_2^2 dx$$

(mean squared error).

Optimal sampling: given a fixed sampling size N, minimize error

$$X' = \arg \min_{X'} \varepsilon(X') \quad \text{s.t.} \quad |X'| = N$$

Alternatively: Given a fixed representation error ε_0, minimize sampling size

$$X' = \arg \min_{X'} |X'| \quad \text{s.t.} \quad \varepsilon(X') \leq \varepsilon_0$$
Centroidal Voronoi tessellation

In a sampling X' minimizing $\varepsilon(X')$, each x_i has to satisfy

$$x_i = \arg\min_{x \in V_i} \int_{x' \in V_i} d^2_X(x, x') \, dx$$

(intrinsic centroid)

In the Euclidean case – center of mass

$$x_i = \arg\min_{x \in V_i} \int_{V_i} \|x - x'\|_2^2 \, dx' = \frac{\int_{V_i} x \, dx}{\int_{V_i} dx}$$

In general case: intrinsic centroid of V_i.

Centroidal Voronoi tessellation (CVT): Voronoi tessellation generated by X' in which each x_i is the intrinsic centroid of $V_i(X')$.
Lloyd-Max algorithm

- Start with some sampling X' (e.g., produced by FPS)
- Construct Voronoi decomposition $\{V_i(X')\}$
- For each i, compute intrinsic centroids

$$ \overline{x}_i = \arg\min_{x \in V_i} \int_{x' \in V_i} d_X^2(x, x') \, da $$

- Update $X' = \{\overline{x}_1, ..., \overline{x}_N\}$

- In the limit $N \to \infty$, $\{V_i(X')\}$ approaches the hexagonal honeycomb shape – the densest possible tessellation.

- Lloyd-Max algorithms is known under many other names: vector quantization, k-means, etc.
Sampling as clustering

Partition the space X into clusters V_1, \ldots, V_N with centers x_1, \ldots, x_N to minimize some cost function.

- **Maximum cluster radius**
 \[
 \varepsilon_\infty(x_1, \ldots, x_N) = \max_i \max_{x \in V_i} d_X(x, x_i)
 \]

- **Average cluster radius**
 \[
 \varepsilon_2(x_1, \ldots, x_N) = \frac{1}{N} \sum_{i=1}^{N} \sum_{x \in V_i} d_X(x, x_i)
 \]

In the discrete setting, both problems are **NP-hard**.

Lloyd-Max algorithm, a.k.a. **k-means** is a heuristic, *sometimes* minimizing average cluster radius ε_2 (if converges globally – not guaranteed).
Farthest point sampling *encore*

- Start with some \(x_1 \in X \), \(R_1 = \infty \)
- For \(i = 2, \ldots, N \)
 - Find the **farthest point**
 \[
 x_i = \arg \max_{x \in X} d_X(x, \{x_1, \ldots, x_{i-1}\})
 \]
 - Compute the **sampling radius**
 \[
 R_i = d_X(x_i, \{x_1, \ldots, x_{i-1}\})
 \]

Lemma

- \(R_1 \geq R_2 \geq \ldots \geq R_N \)
- \(\varepsilon_\infty(x_1, \ldots, x_N) = R_{N+1} \)
Proof

- \(R_1 \geq R_2 \geq \ldots \geq R_N \)

For any \(j > i \)

\[
R_j = d_X(x_j, \{x_1, \ldots, x_{j-1}\}) \\
= d_X(x_j, \{x_1, \ldots, x_{i-1}, \ldots, x_{j-1}\}) \\
\leq d_X(x_j, \{x_1, \ldots, x_{i-1}\}) \\
\leq d_X(x_i, \{x_1, \ldots, x_{i-1}\}) = R_i
\]

\(x_i = \arg \max_{x \in X} d_X(x, \{x_1, \ldots, x_{i-1}\}) \)
Proof (cont)

\[\varepsilon_\infty(x_1, \ldots, x_N) = R_{N+1} \]

\[
\max_{x \in X} d_X(x, \{x_1, \ldots, x_N\}) = \max_{x \in \bigcup_i V_i} d_X(x, \{x_1, \ldots, x_N\})
\]

\[
= \max_{i=1,\ldots,N} \max_{x \in V_i} d_X(x, \{x_1, \ldots, x_N\})
\]

\[
= \max_{i=1,\ldots,N} \max_{x \in V_i} d_X(x, x_i)
\]

\[
= \varepsilon_\infty(\{x_1, \ldots, x_N\})
\]

Since \(x_{N+1} = \arg \max_{x \in X} d_X(x, \{x_1, \ldots, x_N\}) \), we have

\[
\varepsilon_\infty(\{x_1, \ldots, x_N\}) = \max_{x \in X} d_X(x, \{x_1, \ldots, x_N\}) = d_X(x_{N+1}, \{x_1, \ldots, x_N\}) = R_{N+1}
\]
Almost optimal sampling

Theorem (Hochbaum & Shmoys, 1985)

Let \(x_1, \ldots, x_N \) be the result of the FPS algorithm. Then

\[
\varepsilon_\infty(\{x_1, \ldots, x_N\}) \leq 2 \min \varepsilon_\infty
\]

In other words: FPS is worse than optimal sampling by at most 2.
Idea of the proof

Let V_1^*, \ldots, V_N^* denote the optimal clusters, with centers x_1^*, \ldots, x_N^*.

Distinguish between two cases:

- One of the clusters contains two or more of the points x_1, \ldots, x_N.
- Each cluster contains exactly one of the points x_1, \ldots, x_N.

![Diagram with points and clusters](image-url)
Proof (first case)

Assume one of the clusters V_i^* contains two or more of the points x_1, \ldots, x_N, e.g. x_j, x_k

$$2\varepsilon_\infty(\{x_1^*, \ldots, x_N^*\}) =$$

$$2 \max_{i=1,\ldots,N} \max_{x \in V_i^*} d_X(x, x_i^*) \geq$$

$$2 \max_{x \in V_i^*} d_X(x, x_i^*) \geq$$

$$d_X(x_j, x_i^*) + d_X(x_k, x_i^*) \geq d_X(x_j, x_k) \geq R_N$$

triangle inequality

Hence: $$2\varepsilon_\infty(\{x_1^*, \ldots, x_N^*\}) \geq R_N \geq R_{N+1} = \varepsilon_\infty(\{x_1, \ldots, x_N\})$$
Proof (second case)

Assume each of the clusters V_i^* contains exactly one of the points x_1, \ldots, x_N, e.g. x_j.

Then, for any point $x \in V_i^*$

$$d_X(x, \{x_1, \ldots, x_N\}) \leq d_X(x, x_j) \leq d_X(x, x_i^*) + d_X(x_j, x_i^*)$$

triangle inequality

$$\leq 2 \max_{x \in V_i^*} d_X(x, x_i^*) \leq 2 \max_{i=1,\ldots,N} \max_{x \in V_i^*} d_X(x, x_i^*)$$

$$= 2\epsilon_\infty(\{x_1^*, \ldots, x_N^*\})$$
Proof (second case, cont)

We have: for any i, for any point $x \in V_i^*$

$$d_X(x, \{x_1, ..., x_N\}) \leq 2\varepsilon_\infty(\{x_1^*, ..., x_N^*\})$$

In particular, for x_{N+1}

$$\varepsilon_\infty(\{x_1, ..., x_N\}) =$$

$$R_{N+1} = d_X(x_{N+1}, \{x_1, ..., x_N\}) \leq 2\varepsilon_\infty(\{x_1^*, ..., x_N^*\})$$