Introduction to geometry

The German way

Manifolds

A topological space in which every point has a neighborhood homeomorphic to \mathbb{R}^n (topological disc) is called an n-dimensional (or n-) manifold.

Charts and atlases

A homeomorphism $\alpha : U_\alpha \to \mathbb{R}^n$ from a neighborhood U_α of $x \in \mathcal{X}$ to \mathbb{R}^n is called a chart. A collection of charts whose domains cover the manifold is called an atlas.

Smooth manifolds

Given two charts $\alpha : U_\alpha \to \mathbb{R}^n$ and $\beta : U_\beta \to \mathbb{R}^n$ with overlapping domains $U_\alpha \cap U_\beta$ change of coordinates is done by transition function $\beta \circ \alpha^{-1} : \alpha(U_\alpha \cap U_\beta) \to \mathbb{R}^n$.

If all transition functions are C^r, the manifold is said to be C^r. A C^∞ manifold is called smooth.

Manifolds with boundary

A topological space in which every point has an open neighborhood homeomorphic to either:
- topological disc \mathbb{R}^n, or
- topological half-disc $[0, \infty) \times \mathbb{R}^{n-1}$

is called a manifold with boundary.

Points with disc-like neighborhood are called interior, denoted by $\text{int}(\mathcal{X})$.

Points with half-disc-like neighborhood are called boundary, denoted by $\partial \mathcal{X}$.
Embedded surfaces

- Boundaries of tangible physical objects are two-dimensional manifolds.
- They reside in (are embedded into, are subspaces of) the ambient three-dimensional Euclidean space.
- Such manifolds are called embedded surfaces (or simply surfaces).
- Can often be described by the map \(\mathbf{x} : U \subset \mathbb{R}^2 \to X \subset \mathbb{R}^3 \)
 - \(U \subset \mathbb{R}^2 \) is a parameterization domain.
 - the map \(\mathbf{x}(u, v) = (x(u, v), y(u, v), z(u, v)) \)
 is a global parameterization (embedding) of \(X \).
- Smooth global parameterization does not always exist or is easy to find.
- Sometimes it is more convenient to work with multiple charts.

Tangent plane & normal

- At each point \(\mathbf{x} \in U \), we define local system of coordinates
 \[\mathbf{s}_1 = \frac{\partial \mathbf{x}}{\partial u} \quad \mathbf{s}_2 = \frac{\partial \mathbf{x}}{\partial v} \]
- A parametrization is regular if \(\mathbf{s}_1 \) and \(\mathbf{s}_2 \) are linearly independent.
- The plane \(T_{\mathbf{x}} X = \text{span}(\mathbf{s}_1, \mathbf{s}_2) \)
 is tangent plane at \(\mathbf{x} = \mathbf{x}(u, v) \).
- Local Euclidean approximation of the surface.
- \(N \perp T_{\mathbf{x}} X \) is the normal to surface.

First fundamental form

- Infinitesimal displacement on the chart \(ds \)
- Displaces \(\mathbf{x} \) on the surface by
 \[ds = \mathbf{x}(u + du, v + dv) - \mathbf{x}(u, v) = s_1 du + s_2 dv \]
- \(J \) is the Jacobean matrix, whose columns are \(\mathbf{s}_1 \) and \(\mathbf{s}_2 \).

Parametrization of the Earth

\[U = \left[\frac{\mathbf{w}}{\sqrt{2}} \right] \times [-\pi, \pi] \]
\[s^2 = r \cos^2 \theta \cos^2 \phi \]
\[s^3 = r \sin^2 \theta \cos^2 \phi \]
\[s^1 = r \sin \theta \cos \phi \]

Orientability

- Normal is defined up to a sign.
- Partitions ambient space into inside and outside.
- A surface is orientable, if normal \(\mathbf{N} \) depends smoothly on \(\mathbf{x} \).

Möbius stripe
Klein bottle
(3D section)

First fundamental form

- Length of the displacement
 \[ds^2 = |ds|^2 = ds^T J^T J ds \]
- \(G \) is a symmetric positive definite 2x2 matrix.
- Elements of \(G \) are inner products
 \[g_{ij} = (s_i, s_j) \]
- Quadratic form
 \[ds^2 = ds^T G ds \]
 is the first fundamental form.
First fundamental form of the Earth

- Parametrization
 \[z = (r \cos u \cos v, r \sin u \cos v, r \sin v) \]
- Jacobian
 \[x_1 = (-r \cos u \sin v, r \sin u \cos v, r \cos v) \]
 \[x_2 = (-r \sin u \cos v, r \cos u \sin v, r \sin v) \]
- First fundamental form
 \[g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 \cos^2 u & 0 \\ 0 & 0 & r^2 \sin^2 u \cos^2 v \end{pmatrix} \]

Intrinsic geometry

- Length of the curve
 \[\ell(\gamma) = \int_{\gamma} ds = \int_{0}^{1} \sqrt{g(\gamma'(t)) \cdot \gamma'(t)} \, dt \]
- First fundamental form induces a length metric (intrinsic metric)
 \[ds^2 = g_{ij}(x_1, x_2) \, dx^i \, dx^j \]
- Intrinsic geometry of the shape is completely described by the first fundamental form.
- First fundamental form is invariant to isometries.

Area

- Differential area element on the chart: rectangle \(dx_1 \times dx_2 \)
- Copied by \(\gamma \) to a parallelogram \(d\alpha_1 \times d\alpha_2 \) in tangent space.
- Differential area element on the surface:
 \[d\alpha = \sqrt{|e_1^2 e_2 e_3^2 - e_1 e_2 e_3 (e_1 e_2 e_3)|} \, ds \]

Area

- Area or a region \(\Omega \subset X \) charted as \(\Omega = \alpha(\omega \subset \mathbb{R}^2) \)
 \[x(\omega) = \int_{\omega} ds = \int_{\omega} \sqrt{g(\gamma'(t)) \cdot \gamma'(t)} \, dt \]
- Relative area
 \[\sigma(\alpha) = \frac{\mu(\alpha)}{\mu(X)} \]
- Probability of a point on \(X \) picked at random (with uniform distribution) to fall into \(\Omega \).
 Formally
 \[p(\Omega) \sigma(\Omega) \] are measures on \(X \).
Curvature in a plane
- Let \(\gamma : [a, b] \to \mathbb{R}^2 \) be a smooth curve parameterized by arclength
 \[\int_a^b ||\gamma'(t)|| dt = |a - b| \]
- \(\gamma' \) trajectory of a race car driving at constant velocity.
- \(\gamma'' \) velocity vector (rate of change of position), tangent to path.
- \(\gamma''' \) acceleration (curvature) vector, perpendicular to path.
- \(k = ||\gamma'''|| \) curvature, measuring rate of rotation of velocity vector.

Curvature on surface
- Now the car drives on terrain \(X \).
- Trajectory described by \(\gamma : [a, b] \to X \).
- Curvature vector \(\gamma' \) decomposes into
 - \(P_{\gamma'} \) geodesic curvature vector.
 - \(P_{\gamma''} \) normal curvature vector.
- Normal curvature \(n_\gamma = \langle X, \gamma' \rangle \)
- Curves passing in different directions have different values of \(n_\gamma \).
 Said differently:
 - A point \(\gamma \in X \) has multiple curvatures!

Principal curvatures
- For each direction \(v \in T_\gamma X \), a curve \(\gamma \) passing through \(\gamma(0) = \gamma \) in the direction \(\gamma'(0) = v \) may have a different normal curvature \(\kappa_v \).
- Principal curvatures \(\kappa_1 = \max_{v \in T_\gamma X} \kappa_v \) \(\kappa_2 = \min_{v \in T_\gamma X} \kappa_v \)
- Principal directions \(v_1 = \arg \max_{v \in T_\gamma X} \kappa_v \) \(v_2 = \arg \min_{v \in T_\gamma X} \kappa_v \)

Curvature a different view
- A plane has a constant normal vector, e.g. \(X = (0, 0, 1) \).
- We want to quantify how a curved surface is different from a plane.
- Rate of change of \(X \), i.e., how fast the normal rotates.
- Directional derivative of \(X \) at point \(\gamma \in X \) in the direction \(v \in T_\gamma X \)
 \[D_v X = \lim_{h \to 0} \frac{1}{h} (X(\gamma(0)) - X(\gamma(h))) = \frac{d}{dt} X(\gamma(t)) \bigg|_{t=0} \]
- \(\gamma : [a, b] \to X \) is an arbitrary smooth curve with \(\gamma(0) = \gamma \) and \(\gamma'(0) = v \).

Curvature
- \(D_v N \) is a vector in \(T_{\gamma'} X \) measuring the change in \(N \) as we make differential steps in the direction \(v \).
- Differentiate \(L = \langle N, N \rangle \) w.r.t. \(t \)
 \[\begin{align*}
 0 &= \frac{d}{dt} \langle N, N \rangle \\
 &= 2 \langle DN, N \rangle
 \end{align*} \]
- Hence \(DN \cdot LN = DN \cdot LN \in T_{\gamma'} X \).
- Shape operator (a.k.a. Weingarten map): is the map \(S : T_{\gamma'} X \to T_{\gamma'} X \) defined by
 \[S(v) = -DN \]
Shape operator

- Can be expressed in parametrization coordinates as $G(u) = du$
- G is a 2x2 matrix satisfying
 $$\begin{pmatrix} G(u_1) \\ G(u_2) \end{pmatrix} = B \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
- Multiply by (u_1, u_2)
 $$\begin{pmatrix} G(u_1) \\ G(u_2) \end{pmatrix} (u_1, u_2) = B \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} (u_1, u_2)$$
 $$B = BG$$

Second fundamental form

- The matrix B gives rise to the quadratic form
 $$B(v, w) = B(v, w) = \psi^T B \psi$$
- Called the second fundamental form.
- Related to shape operator and first fundamental form by identity
 $$B = BG^{-1}$$

Principal curvatures encore

- Let $\gamma : I \to \mathbb{R}^3$ be a curve on the surface.
- Since $\gamma' \times \gamma'' \neq 0$
- Differentiate w.r.t. t
 $$\frac{d}{dt} (\gamma', \gamma'', \gamma''') = (\gamma' \times \gamma'')$$
- Normal
 $$n = (\gamma', \gamma', \gamma'') = (\gamma', -D_t N) = B(t', t'') = t'' B^{-1}$$
- $n_1 \leq t'' B^{-1} \leq n_2$
- n_1 is the smallest eigenvalue of B.
- n_2 is the largest eigenvalue of B.
- \mathcal{H}, \mathcal{E} are the corresponding eigenvectors.

Mean and Gaussian curvatures

- Mean curvature
 $$H = \frac{1}{2} (n_1 + n_2) = \frac{1}{2} \text{trace} B$$
- Gaussian curvature
 $$K = n_1 n_2 = \text{det} B$$

- Hyperbolic point $K < 0$
- Elliptic point $K > 0$
Extrinsic & intrinsic geometry
- First fundamental form describes completely the intrinsic geometry.
- Second fundamental form describes completely the extrinsic geometry – the "layout" of the shape in ambient space.
- First fundamental form is invariant to isometry.
- Second fundamental form is invariant to rigid motion (congruence).
- If \(X \) and \(f(X) \) are congruent (i.e., \(f \in \text{Isom}(\mathbb{R}^3) \)), then they have identical intrinsic and extrinsic geometries.
- Fundamental theorem: a map preserving the first and the second fundamental forms is a congruence. Said differently: an isometry preserving second fundamental form is a restriction of Euclidean isometry.

Riemannian geometry
- Riemannian metric: bilinear symmetric positive definite smooth map \(g_x : T_x X \times T_x X \to \mathbb{R} \)
- Abstract inner product on tangent space of an abstract manifold.
- Coordinate-free.
- In parametrization coordinates is expressed as first fundamental form.
- A farewell to extrinsic geometry!

An intrinsic view
- Our definition of intrinsic geometry (first fundamental form) relied so far on ambient space.
- Can we think of our surface as an abstract manifold immersed nowhere?
- What ingredients do we really need?
 - Smooth two-dimensional manifold
 - Tangent space \(T_x X \) at each point.
 - Inner product \(\langle \cdot, \cdot \rangle_x : T_x X \times T_x X \to \mathbb{R} \)
- These ingredients do not require any ambient space!

Nash’s embedding theorem
- Embedding theorem (Nash, 1956): any Riemannian metric can be realized as an embedded surface in Euclidean space of sufficiently high yet finite dimension.
- Technical conditions:
 - Manifold is \(C^4 \text{, } n \geq 3 \)
 - For an \(m \)-dimensional manifold, embedding space dimension is \(n = m^2 + m + 3 \)
- Practically: intrinsic and extrinsic views are equivalent!

Uniqueness of the embedding
- Nash’s theorem guarantees existence of embedding.
- It does not guarantee uniqueness.
- Embedding is clearly defined up to a congruence.
- Are there cases of non-trivial non-uniqueness?
 - Formally:
 - Given an abstract Riemannian manifold \((S, g)\), and an embedding \(\varepsilon : S \to \mathbb{R}^3 \), does there exist another embedding \(\gamma : S \to \mathbb{R}^3 \) such that \(X = \varepsilon(U) \) and \(Y = \gamma(U) \) are incongruent?
 - Said differently:
 - Do isometric yet incongruent shapes exist?
Processing & Analysis of Geometric Shapes

Bending

- Shapes admitting incongruent isometries are called **bendable**.
- Plane is the simplest example of a bendable surface.
- **Bending**: an isometric deformation transforming X into Y.

Bending and rigidity

- Existence of two incongruent isometries X, Y does not guarantee that X can be physically folded into Y without the need to cut or glue.
- If there exists a family of bendings f_t continuous w.r.t. t such that $f_0(X) = X$ and $f_1(Y) = Y$, the shapes are called **continuously bendable** or applicable.
- Shapes that do not have incongruent isometries are **rigid**.
- **Extrinsic geometry** of a rigid shape is fully determined by the intrinsic one.

Alice’s wonders in the Flatland

- Subsets of the plane: $X \subset \mathbb{R}^2$
- Second fundamental form vanishes everywhere
- Isometric shapes X and Y have identical first and second fundamental forms
- Fundamental theorem: X and Y are congruent.

Rigidity conjecture

- If the faces of a polyhedron were made of metal plates and the polyhedron edges were replaced by hinges, the polyhedron would be rigid.
- In practical applications shapes are represented as polyhedra (triangular meshes), so…

Rigidity conjecture timeline

- 1766: Euler’s Rigidity Conjecture: every polyhedron is rigid
- 1813: Cauchy: every convex polyhedron is rigid
- 1927: Cohn-Vossen: all surfaces with positive Gaussian curvature are rigid
- 1974: Gluck: almost all simply connected surfaces are rigid
- 1977: Connelly finally disproves Euler’s conjecture

Connelly sphere

- Isocahedron
 - Rigid polyhedron
- Connelly sphere
 - Non-rigid polyhedron
“Almost rigidity”
- Most of the shapes (especially, polyhedra) are rigid.
- This may give the impression that the world is more rigid than non-rigid.
- This is probably true, if isometry is considered in the strict sense
 \[\frac{\partial L(f(x), f(x'))}{\partial x} = \frac{\partial L(x, x')}{\partial x} \]
- Many objects have some elasticity and therefore can bend almost isometrically
 \[\frac{\partial L(f(x), f(x'))}{\partial x} \approx \frac{\partial L(x, x')}{\partial x} \]
- No known results about “almost rigidity” of shapes.

Gaussian curvature – a second look
- Gaussian curvature measures how a shape is different from a plane.
- We have seen two definitions so far:
 - Product of principal curvatures: \(K = R_1 R_2 \)
 - Determinant of shape operator: \(K = \det S \)
- Both definitions are extrinsic.

Here is another one:
- For a sufficiently small \(r \), perimeter of a metric ball of radius \(r \) is given by
 \[P(r) = 2\pi r - \frac{\pi}{3} r^3 + O(r^4) \]

Gaussian curvature – a second look
- Riemannian metric is locally Euclidean up to second order.
- Third order error is controlled by Gaussian curvature.
- Gaussian curvature
 \[K = \lim_{\varepsilon \to 0} \frac{2\pi r - P(r)}{\varepsilon^3} \]
- \(2\pi r - P(r) \) measures the defect of the perimeter, i.e., how \(P(r) \) is different from the Euclidean \(2\pi r \).
 - positively curved surface – perimeter smaller than Euclidean.
 - negatively curved surface – perimeter larger than Euclidean.

Theorema egregium
- Our new definition of Gaussian curvature is intrinsic!
- Gauss’ Remarkable Theorem
 \[\text{...formula itaque sponte perducit ad egregium theorema: si superficies curva in quamcunque aliam superficiem explicat, mensura curvarum in singulis punctis invariata manet.} \]
 \[\text{In modern words:} \]
 - Gaussian curvature is invariant to isometry.

An Italian connection...
Gauss-Bonnet formula

- Solution: integrate Gaussian curvature over the whole shape
 \[\chi_X = \int_X K \, dA \]
- \(\chi_X \) is Euler characteristic.
- Related genus by
 \[\chi_X = 2 - 2 \text{genus } X \]
- Stronger topological rather than geometric invariance.
- Result known as Gauss-Bonnet formula.

Intrinsic Invariants

- We all have the same Euler characteristic \(\chi = 2 \).
- Too crude a descriptor to discriminate between shapes.
- We need more powerful tools.