Problems
Partial Similarity
Numerical geometry of non-rigid shapes

May 9, 2008

1. Show that a Salukwadze optimum is also a Pareto optimum.

2. Show that characteristic functions representing crisp parts belong to
Mx.

3. Show that the definition
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and D > max{diam(X), diam(Y")} is equivalent to the Gromov-Hausdorff
distance for crisp parts.

4. What will be the consequence of choosing large values of D in the
computation of the fuzzy Pareto distance? Explain.



5. Show that if D = max{diam(X),diam(Y)}/6(1 —0), where 0 <0 <1
is a parameter, the following relation between dp and dp holds:

dp(X,Y) < ((1-6),67%) - dp(X.Y),
where the inequality is understood in the vector sense.

6. In lossy image and video compression, a fundamental problem is the
trade-off between the amount of information used to describe the data
(rate) and the amount of error introduced by the compression process
(distortion). Describe the rate-distortion optimization problem from
the perspective of partial similarity. Prove that the Pareto frontier
(the rate-distortion curve) is convex.

7. Show a closed form solution for the best rigid motion between the
two sets of corresponding points {z;}Y; and {y;}}¥,, minimizing the
weighted point-to-point distance
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where w; are non-negative weights.



